Can ALS-Associated C9orf72 Repeat Expansions Be Diagnosed on a Blood DNA Test Alone?
نویسندگان
چکیده
Gene mutations that preferentially affect the CNS have been implicated in a number of neurological disorders. This leads to the possibility that a disease-causing mutation present only in CNS tissues could be missed if it were tested in a blood DNA sample only. The commonest mutation in amyotrophic lateral sclerosis (ALS) is an expansion of the hexanucleotide repeats of C9orf72. To find out if CNS-specific mutations of this gene could cause some cases of ALS we looked for differences in the size of C9orf72 repeats between DNA from the CNS and from white blood cells (WBCs) of 38 sporadic ALS patients, using a repeat-primed PCR screening test. We also looked for differences in C9orf72 repeats in WBC DNA from 6 ALS-discordant and 1 ALS-concordant monozygotic twins. Abnormally expanded C9orf72 repeats were found in 13% of the ALS CNS samples, as well as in their paired WBC DNA. The 87% of ALS CNS samples with normal-sized C9orf72 repeats had the same number of repeats in paired WBC samples. All ALS-discordant twins had the same normal numbers of WBC C9orf72 repeats. Although previous work suggests some tissue mosaicism in C9orf72 repeat size is probably present, this study indicates that this is not likely to be of sufficient magnitude to result in a normal C9orf72 repeat length in blood but an abnormally expanded repeat length in the CNS. This suggests that a blood DNA test alone will usually be sufficient to make a diagnosis of C9orf72 repeat-related ALS.
منابع مشابه
Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotide repeat expansions in C9orf72.
IMPORTANCE Here we report a family with coexistence of multiple system atrophy (MSA) and amyotrophic lateral sclerosis (ALS) with hexanucleotide repeat expansions in C9orf72. OBSERVATIONS A 65-year-old woman had a 2-year history of ataxia with autonomic dysfunction but without motor neuron signs. She was diagnosed as having MSA based on her clinical history and the hot cross bun sign on brain...
متن کاملScreening for novel hexanucleotide repeat expansions at ALS- and FTD-associated loci
OBJECTIVE To determine whether GGGGCC (G4C2) repeat expansions at loci other than C9orf72 serve as common causes of amyotrophic lateral sclerosis (ALS). METHODS We assessed G4C2 repeat number in 28 genes near known ALS and frontotemporal dementia (FTD) loci by repeat-primed PCR coupled with fluorescent fragment analysis in 199 patients with ALS (17 familial, 182 sporadic) and 136 healthy cont...
متن کاملThe Association between C9orf72 Repeats and Risk of Alzheimer's Disease and Amyotrophic Lateral Sclerosis: A Meta-Analysis
C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in Caucasian populations. However, the relationship between C9orf72 repeats and Alzheimer's disease (AD) was not clear. Additionally, there were few articles assessing C9orf72 in other ethnicities with ALS. In this meta-analysis, we aimed to investigate the relationship between C9or...
متن کاملC9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes
Large expansions of a non-coding GGGGCC-repeat in the first intron of the C9orf72 gene are a common cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). G-rich sequences have a propensity for forming highly stable quadruplex structures in both RNA and DNA termed G-quadruplexes. G-quadruplexes have been shown to be involved in a range of processes including telome...
متن کاملTopology of a G-quadruplex DNA formed by C9orf72 hexanucleotide repeats associated with ALS and FTD
Abnormal expansions of an intronic hexanucleotide GGGGCC (G4C2) repeat of the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Previous studies suggested that the C9orf72 hexanucleotide repeat expansion (HRE), either as DNA or the transcribed RNA, can fold into G-quadruplexes with distinct structures. These structural polym...
متن کامل